Universal Electromagnetic Matrix (Prime Number Pattern)

Marlon Fernando Polegato, no student ties at the moment.

E-Mail: marlonpolegato@hotmail.com

Summary:

In search of a solution of how the numbers and their patterns came about, a universal pattern was found making a fusion between Nicolas Tesla's multiplication map, with his remarkable phrase "If you knew the magnificence of the numbers 3,6 and 9 you would have the key to the universe"; with the representation of a structure by Albert Einstein that he says is "the true essence of the Universe"; Newton with his theories of colors and also the Fibonacci Sequence which he says is "the secret code of Nature or Divine sequence" thus creating a new extended graph that was called Universal Electromagnetic Matrix, as it applies to practically several tests, since particle formation to chemical and astronomical bonds, as this part is not completed, in this article we will talk about how the matrix pattern was found, how it can favor us towards technological evolution, in addition to the importance of a new method of sending and processing data as, with better understanding of this matrix, all cryptography as we know it can be cracked. The best way found to prove the Matrix was finding the pattern for locating the prime numbers, thus making their locations easier and faster, in addition to generating new numbers with magnitudes and speeds never seen, but also making a possible solution on how we can improve and advance towards technology from a new computational method, using electromagnetic waves of colors, exponentially increasing our speed power in sending and processing data, enabling the creation of an interactive artificial intelligence in the medium, with the purpose of solving various problems. Our problems more assertively and quickly.

Key Word:

Universal Matrix, Artificial Intelligence, Prime Number Pattern
Index:

1. Introduction:

2. Methodologies and results:

2.1. Brief introduction to the Matrix;

2.2. Numerical Discovery;

2.3. Color theory;

2.4. Union graphics;

2.5. Sending data;

2.6. Universal electromagnetic interaction table;
2.7. Filter table in electromagnetic inderation;
2.8. Multiverse electromagnetic matrix;
2.9. Universal electromagnetic matrix;
3. Prime number patterns:
3.1. Behavioral patterns of prime numbers:
3.2. Proof:
3.3. Elimination of future compounds:
3.4. NP projection:
3.4.1. Where from the largest result to the smallest we have;
3.4.2. Where from the smallest result to the largest we have;
3.5. Twin cousins:
3.5.1. We can conclude that;
4. Conclusion.
5. Bibliographic references: Index:

1. Introduction:
2. Methodologies and results:
2.1. Brief introduction to the Matrix;
2.2. Numerical Discovery;
2.3. Color theory;
2.4. Union graphics;
2.5. Sending data;
2.6. Universal electromagnetic interaction table;
2.7. Filter table in electromagnetic inderation;
2.8. Multiverse electromagnetic matrix;
2.9. Universal electromagnetic matrix;
3. Prime number patterns:
3.1. Behavioral patterns of prime numbers:
3.2. Proof:
3.3. Elimination of future compounds:
3.4. NP projection:

3.4.1. Where from the largest result to the smallest we have;

3.4.2 Where from the smallest result to the largest we have;

3.5. Twin cousins:

3.5.1. We can conclude that;

4. Conclusion.

5. Bibliographic references:

1. Introduction:

Throughout the evolutionary history of humanity, the factors that most contributed to cultural and technological advancement was the ability to communicate, transmit and especially store information, but over the years and especially after the emergence of computing and the internet, this need has increased significantly, the sending, storing and processing of data currently follows a binary calculation pattern with two possibilities 0 and 1 or on/off or better definition yes/no, which was devised in the 18th century by the German Gottfried where it was possible to creation of data processing and sending in computing and the internet, to which society has created such dependence and reliability that it currently enables us to do routine tasks, such as buying and using banks from cell phones and computers for example, even our money, it's just a number in a database, so how do you protect it? The most efficient method is known as NP based on prime numbers, but with so much information currently generated, this process is becoming obsolete because the same way it protects us, it prevents us from evolving technologically due to complex calculations, making it necessary to create new ones methods, with that, quantum computing was created using the same concepts 0 and 1 , on/off using the concept of quantum overlap in case 2, making this information processing much faster, but this process, in addition to being expensive, requires physical conditions of In installations that can only be used in the industrial world, even though this method is very efficient it is still limited by two quantum states on and off leaving the process long and somewhat limited to some mathematical expressions.

This work aims at a new form of interaction, where we consider a third option that would be yes/maybe/no, considering the (maybe) we can reach 12 states of interactions and 32 of overlap, and we can reach an even greater number of overlap as we improve this process, this is already possible with existing technologies, which in this case is fiber optics for transmission, leaving the limitation of 0 and 1 on/off, colors can be sent or if you prefer different sizes of electromagnetic waves, increasing the speed considerably in relation to current quantum processing, and for analysis of colors and sizes of electromagnetic waves we have the Arduino and also the spectral analyzer respectively as examples, and as we improve this process and these technologies we can achieve increasingly satisfactory results, and generate compact and interactive circuits with the light filters proposed by the electromagnetic interaction table as we will see the follow.

2. Methodology:

2.1. Brief introduction to the Matrix:

In search of a solution of how numbers and their patterns emerged, where the main concept was based on the fractal pattern using modern decimal numerology, that is, from 0 to 9 it was possible to generate a numerical geometry based on Platonic geometries, giving the they their proper paths, a universal pattern was found, making a fusion between Nicolas Tesla's multiplication map with his striking phrase "If you knew the magnificence of the numbers 3,6 and 9 you would have the key to the universe" with the representation of a Albert Einstein's structure that says it is "the true essence of the Universe" and also the Fibonacci Sequence that says it is "the secret code of Nature or Divine Sequence" thus creating a new extended graph that I know called Universal Electromagnetic Matrix beyond what it gives with several patterns already observed in nature, let's start with the primary patterns until we reach the universal matrix where before we go through a multiverse matrix not yet exposed through patterns completely until we get to prime numbers.

2.2. Numerical Discovery:

The beginning; the numbers as well as the universe always existed and we are just interpreting them in nature due to their geometric patterns where this article aims to demonstrate that everything exists in pattern; we start with the numeric classes and groups in the decimal system; Here, a little of Fibonacci's mathematics will be presented, which summarizes any number to a digit that consists of adding them up to a decimal place. Google but it is part of the Fibonacci and Tesla calculations;

Ex:

	Grupo 1	Grupo 2	Grupo 3
Classe 1	111	222	333
Onde $=$	$1+1+1$	$2+2+2$	$3+3+3$
Total	3	6	9
Classe 2	444	555	666
Onde $=$	$4+4+4$	$5+5+5$	$6+6+6$
Onde $=$	$12=1+2$	$15=1+5$	$18=1+8$
Total	3	6	9
Classe 3	777	888	999
Onde $=$	$7+7+7$	$8+8+8$	$9+9+9$
Onde $=$	$21=2+1$	$24=2+4$	$27=2+7$

9	6	3	9	9
6	1	2	3	3
6	4	5	6	3
6	7	8	9	3
9	3	6	9	9

Total	3	6	9

So we started to see the first numerical patterns, now the two graphs will be presented where the base reference was making a fusion between Nicolas Tesla's multiplication map and Albert Einstein's structure, thus creating a new extended version which will be called Universal Electromagnetic Matrix, we won't go into details about them, because in addition to not finding much reference going to the interpretation of each one, the intuition is just to present them as a bibliographic reference.

In this case, the most relevant patterns in this map are the reference number 12 where it, in addition to being used as a distribution, is also used as a summation.

"The world was created with sentences, made of words, made of letters. Hidden behind these are numbers, representing a structure, a construction where, without a doubt, other worlds appear and I want to analyze and understand them because what matters is not this or that phenomenon, but the nucleus, the true essence of the universe. "

Albert Einstein

2.3. Color theory:

In 1672 Newton presented his concept that light is "a heterogeneous mixture of rays with different refractibilities", each color corresponding to a different refractibilities. He also presented several experiments to collaborate his theory, being important to emphasize the union of light colors and their results;

Ex:

Cor/Luz

Síntese Adiliva

Se misturarmos duas luzes coloridas, a luz colorida resultante é sempre mais clara, mais luminosa.

Por esta razão, diz-se que a mistura das luzes coloridas é aditiva.

Da sobreposição de todas elas - sintese aditiva - resulta o branco

2.4. Union graphics:

A pattern between colors and numbers was obtained, in which the colors were numbered and given the order from which the rest of the content to be presented was obtained, the triangular numerical patterns with their respective colors where the sequence $(1,4,7)$ represent the primary colors in the RGB scale and the sequence $(8,5,7)$ represents the secondary colors of the same scale in which the sequence (6,93), 9 is at the same time nullification and union between the inversely equal pairs and $(3,6)$ are the projections on a third plane, making not only the numerical and color expansion but also interlacing them where the sum of their numerical opposites gives 9 and chromatic results in the white color.

天 Inversamente igual

Autor: Marlon F. Polegato

2.5. Sending data:

When sending data, we use the numbers with their respective colors; being them:

1 = red	$4=$ green	$7=$ blue	0 = black
2 = yellow	$5=$ magenta	$8=$ cyan	
3 = olive	$6=$ violet	$9=$ white	

We can represent them within the Bits being the first numerical place destined to the recognition between letters/many characters or numbers where in a conventional Bits we have 8 bits, and then the possibility of a maximum of 255 characters in this new model we can reach in the numerical case sending the white light that represents the number 9 in the remaining 7 places, with the possibility of 9,999,999 characters in addition to the speed gain in the sending by optimizing the occupied space, generating a speed gain due to the displacement of the light itself in comparison to the electron .

Ex:

0=preto	Preto	Ciano	Azul	Violeta	Magenta	Verde	Oliva
9=branco	9	8	7	6	5	4	3
$0=$ números	Cada cor representa seus respectivos números						
9=letras	Cada número terá seu respectivo caractere						

2.6. Universal electromagnetic interaction table:

Principle of the fractal pattern of geometries; to numbers; the colors; atomic links...etc.; with the extension of this graphic it was possible to reach the standards of the universal electromagnetic matrix.

2.7. Electromagnetic Inderation Filter Table:

This table represents the graph above where it can be used in data processing in the new computational method presented, and the fraction of each color can be aggregated in a new circuit making a mathematical operation much more dynamic, fast and practical, in addition to being useful. As a new form of cryptography as they can contain different color shades being customized, each unique filter seals as a fingerprint.

			Filtros de vidro com suas respectivas cores													
Numeros	Cores	Comprimento de Onda (Nm)	Br	Pr	Ver	Verd	Az	Am	Ci	Mag	La	Tur	Cel	Ros	Oli	Vio
9	Branco	180	+		T	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	$\stackrel{+}{\square}$	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow
0	Preto (nulo)	0	\rightarrow													
1	Vermelhor	660	\rightarrow		\rightarrow			\rightarrow		-	\rightarrow				\rightarrow	\rightarrow
4	Verde	540	\rightarrow			\rightarrow		\rightarrow	\rightarrow		\rightarrow	\rightarrow	\rightarrow		\rightarrow	
7	Azuz	420	\rightarrow				\rightarrow		\rightarrow	-		\rightarrow	\rightarrow	\rightarrow		\rightarrow
2	Amarelo	600	\rightarrow			\rightarrow		\rightarrow			\rightarrow				\rightarrow	
8	Ciano	480	\cdots				\rightarrow		\rightarrow			\rightarrow	\rightarrow			
5	Magenta	360					\rightarrow							\rightarrow		7
10	Laranja	630	\rightarrow			\rightarrow		\rightarrow			\rightarrow				\rightarrow	
12	Turquesa	510	\rightarrow			\rightarrow	\rightarrow		\rightarrow				\rightarrow			
11	Celeste	450	\rightarrow			\rightarrow	\rightarrow		\rightarrow		\rightarrow		\rightarrow			
13	Rosa	330	\rightarrow		\rightarrow		\rightarrow			\rightarrow				\rightarrow		\rightarrow
3	Oliva	570	\rightarrow		\rightarrow	\rightarrow		\rightarrow			\rightarrow				\rightarrow	
6	Violeta	390	\rightarrow		\rightarrow		\rightarrow			\rightarrow				\rightarrow		\rightarrow

Autor: Marlon F. Polegato
Where interactions work in the following way:

Orange:

$630=2 / 3 * 660+1 / 3^{*} 540$
$630=1 / 2$ * $660+1 / 2$ * 600
$630=2 / 3$ * $570+1 / 3$ * 660

Yellow:

$600=1 / 2 * 630+1 / 2 * 570$
$600=1 / 2 * 660+1 / 2 * 540$
$600=2 / 3 * 630+2 / 3 * 540$
$600=2 / 3$ * $570+1 / 3$ * 660
Olive:
$570=1 / 2 * 540+1 / 2 * 600$
$570=2 / 3 * 540+1 / 3 * 630$

Green:

$540=1 / 2 * 570+1 / 2 * 510$
$540=1 / 2 * 480+1 / 2{ }^{*} 600$
$540=1 / 2 * 450+1 / 2 * 630$
$540=2 / 3$ * $570+1 / 3$ * 480
$540=2 / 3 * 510+1 / 3 * 600$

Turquoise:

$510=2 / 3 * 540+1 / 3 * 450$
$510=1 / 2$ * $540+1 / 2$ * 480

Cyan:

$$
\begin{aligned}
& 480=1 / 2 * 510+1 / 2 * 450 \\
& 480=1 / 2 * 540+1 / 2 * 420 \\
& 480=2 / 3 * 510+1 / 3 * 420
\end{aligned}
$$

Heavenly:

$450=1 / 2 * 480+1 / 2 * 420$
$450=1 / 2 * 480+1 / 2 * 420$

Blue:

$420=1 / 2 * 450+1 / 2 * 390$
$420=1 / 2 * 480+1 / 2 * 360$
$420=2 / 3 * 450+1 / 3 * 360$
$420=2 / 3 * 390+1 / 3$ * 480

Violet:

$390=1 / 2$ * $420+1 / 2$ * 360
$390=2 / 3 * 420+1 / 3 * 330$

Magenta:

$360=1 / 2$ * $390+1 / 2$ * 330
$360=2 / 3$ * $330+1 / 3$ * 360
$360=1 / 3$ * $420+1 / 3$ * 660
Pink:
$=1 / 3 * 660+1 / 3 * 360$

2.8. Multiverse electromagnetic matrix:

From this matrix it is possible to reach all numerical patterns, it consists of rotating the axes and adding the 9 numbers in the 6 columns, each column being able to move in its respective axes, where the patterns keep changing only the distance between the particles being thus none overlap conserving the information.

Author: Marlon Fernando Polegato

2.9. Universal electromagnetic matrix:

In order to fill in addition to following the circular patterns it was necessary to follow the Platonic geometries completing the sum of 3,6 and 9 in addition to the patterns (1, 4, 7); (8,5,2), never leaving a number without a divisor around it, not being possible any other type of configuration in this specific geometry besides maintaining a summation pattern divided into 12 main axes adding to 12 and in some points the number 23, in addition that all numbers have divisors around them or in their flow line that returns to the same number, and these patterns contain in themselves the geometric pattern of the prime numbers, where they can be observed in the lines of 1,5,7 and 11 and 4 more lines outside the center where they follow the flow, we will not go into details as this is not the objective of the work, it is up to each one to interpret it, but I go on to say that this geometric graph will be the map towards technological evolution and chemistry in which you can see known and new patterns of bonds and periodic families to explore.

3. Prime number patterns:

3.1. Behavioral patterns of prime numbers:

Using the concepts shown above in the methodology covered in this article, the known prime numbers were identified within the Universal Electromagnetic

Matrix, which could generate an Excel table with 4 columns, identifying with a 100% possibility where a prime number will be beyond optimizing the calculation significantly, it was also possible to develop an elimination pattern thus making the calculation much faster and more viable where all prime numbers go through the lines of $1,5,7$ and 11 adding to 12 and their respective results added to 12 also being:

$$
\begin{aligned}
& \text { Ex: } 1+12=13 \rightarrow 13+12=25 \rightarrow 25+12=37 \ldots \infty \\
& 5+12=17 \rightarrow 17+12=29 \rightarrow 29+12=41 \ldots \infty \\
& 7+12=19 \rightarrow 19+12=31 \rightarrow 31+12=43 \ldots \infty \\
& 11+12=23 \rightarrow 23+12=35 \rightarrow 35+12=47 \ldots \infty
\end{aligned}
$$

We achieved this same pattern as follows:

Following the previous reasoning, but only with the column number 1 and taking the square root of the sum of its products, so all the integer results follow the same pattern as the 4 columns and the natural numbers between the integers allow us to have bands of electromagnetic waves that do not interfere with each other;

3.2. Proof:

Thus, all prime numbers pass through these 4 columns, being in the elimination by the sum of 12 up to the number 12; we have the following eliminations except the number 5 does not enter the sum $2,3,4,5,6,8,9,10$ and 12 which will be framed in some of the elimination patterns that will be presented shortly, all prime numbers must have as last digit

The numbers $1,3,7$, and 9 which are by-products of the initial sum of the number 12 with the primary prime numbers which are $1,5,7$ and 11 where in the number 11 we use the last digit [1] and return to the ending numbers of the primes which is always adding the last digits where from the number 12 we always use the number [2] added to the last digits of the prime that remains:

1	5	7	11
13	17	19	23
25	29	31	35
37	41	43	47
49	53	55	59
61	65	67	71
73	77	79	83
85	89	91	95
97	101	103	107
109	113	115	119
121	125	127	131
133	137	139	143
145	149	151	155
157	161	163	167
169	173	175	179
181	185	187	191
193	197	199	203
205	209	211	215
217	221	223	227
229	233	235	239
241	245	247	251
253	257	259	263
265	269	271	275
277	281	283	287
289	293	295	299
301	305	307	311
313	317	319	323
325	329	331	335
337	341	343	347
349	353	355	359
361	365	367	371

Ex: $1+2=3$

$$
\begin{aligned}
& 3+2=7 \\
& 7+2=9 \\
& 9+2=11 \rightarrow 1
\end{aligned}
$$

3.3. Elimination of future compounds:

As a pattern for eliminating non-prime numbers in these 4 columns use the following formula:
($\mathrm{Xi}{ }^{\wedge} \mathrm{n}$ where $\mathrm{Xi}=$ initial $\mathrm{X}=1,5,7$ and $11 \rightarrow \mathrm{n}=$ are all the prime numbers found before the number to be analyzed) the rest are products of the sum of them with the number 12 and its elevations or divisions of the prime numbers already found, thus further reducing the calculations needed to identify the prime numbers, since all numbers in the 4 columns that can be divided by a prime number already found before it is a composite number, taking into account that all composite numbers are divisible by one or more prime numbers before it, going to infinity only increasing their distances;

Ex:

Column number 1 is:

$$
\begin{aligned}
& 1^{\wedge} 2=1 \rightarrow 1^{\wedge} 3=1 \rightarrow 1^{\wedge} 5=1 \\
& 1+12=13 \rightarrow 13^{\wedge} 2=169 \rightarrow 13^{\wedge} 3=2197 \rightarrow 13^{\wedge} 5=371293
\end{aligned}
$$

So it goes on the sums from 12 to infinity, also generating a second, third and so on going towards infinite groups in the elimination of the number 1 column where the results of the increase in the sums of the by-products also give a prediction of future elimination raising the results as well. The cousins found previously staying:

Ex:
$169{ }^{\wedge} 2=28561 \rightarrow 169 \wedge 3=4826809 \rightarrow 169 \wedge 5=137858491849$
Following the same process with the results going to infinity.

So 1, 169, 2197, 371293, 28561, 4826809, 137858491849... ∞ do not belong to the set of prime numbers.

Column number 5: $5^{\wedge} 2=25 \rightarrow 5^{\wedge} 3=125 \rightarrow 5^{\wedge} 5=3125$
$5+12=17: 17^{\wedge} 2=289 \rightarrow 17^{\wedge} 3=4913 \rightarrow 17^{\wedge} 5=1419857$
So it goes on the sums from 12 to infinity, also resulting in a second, third going towards infinite groups in the elimination of column number 5 where the results of increasing the sums of the by-products also give a prediction of future elimination raising the results to 2,3 and 5 staying:

Ex:

$25^{\wedge} 2=625 \rightarrow 125^{\wedge} 3=1953125 \rightarrow 3125^{\wedge} 5=289.023^{\wedge} 15$
Remembering that this is just an example showing that these numbers belong to the 4 columns, with numbers ending with 5 being eliminated immediately and the others following the same exemplified pattern, so it continues with the result of their elevations and also with numbers 7 and 11 following the same process with the sums of 12 and raising their results to the primes going to infinity.

Calculation ex in Excel with $\mathrm{Xi}=7$ and 11

Eliminated by raising to n previous primes			Colu na	Eliminated by raising to n previous primes			Colu na
Xi ${ }^{\wedge} 5$	Xi ^3	Xi ^2	Do 7	Xi ^5	Xi ^3	Xi ^2	11
16807	343	49	7	161051	1331	121	11
2476099	6859	361	19	6436343	12167	529	23

28629151	29791	961	31	52521875	42875	1225	35
147008443	79507	1849	43	229345007	103823	2209	47
503284375	166375	3025	55	714924299	205379	3481	59
1350125107	300763	4489	67	1804229351	357911	5041	71
3077056399	493039	6241	79	3939040643	571787	6889	83
6240321451	753571	8281	91	7737809375	857375	9025	95
$\begin{aligned} & 1159274074 \\ & 3 \end{aligned}$	1092727	$\begin{aligned} & 1060 \\ & 9 \end{aligned}$	103	$\begin{aligned} & 1402551730 \\ & 7 \end{aligned}$	1225043	$\begin{aligned} & 1144 \\ & 9 \end{aligned}$	107
$\begin{aligned} & 2011357187 \\ & 5 \end{aligned}$	1520875	$\begin{aligned} & 1322 \\ & 5 \end{aligned}$	115	$\begin{aligned} & 2386353659 \\ & 9 \end{aligned}$	1685159	$\begin{aligned} & 1416 \\ & 1 \end{aligned}$	119
$\begin{aligned} & 3303836940 \\ & 7 \end{aligned}$	2048383	$\begin{aligned} & 1612 \\ & 9 \end{aligned}$	127	$\begin{aligned} & 3857948965 \\ & 1 \end{aligned}$	2248091	$\begin{aligned} & 1716 \\ & 1 \end{aligned}$	131
$\begin{aligned} & 5188884469 \\ & 9 \end{aligned}$	2685619	$\begin{aligned} & 1932 \\ & 1 \end{aligned}$	139	$\begin{aligned} & 5979710894 \\ & 3 \end{aligned}$	2924207	$\begin{aligned} & 2044 \\ & 9 \end{aligned}$	143
$\begin{aligned} & 7850272575 \\ & 1 \end{aligned}$	3442951	$\begin{aligned} & 2280 \\ & 1 \end{aligned}$	151	$\begin{aligned} & 8946609687 \\ & 5 \end{aligned}$	3723875	$\begin{aligned} & 2402 \\ & 5 \end{aligned}$	155
$\begin{aligned} & 1,15064 \mathrm{E}+1 \\ & 1 \end{aligned}$	4330747	$\begin{aligned} & 2656 \\ & 9 \end{aligned}$	163	$\begin{aligned} & 1,29892 \mathrm{E}+1 \\ & 1 \end{aligned}$	4657463	$\begin{aligned} & 2788 \\ & 9 \end{aligned}$	167
$\begin{aligned} & 1,64131 \mathrm{E}+1 \\ & 1 \end{aligned}$	5359375	$\begin{aligned} & 3062 \\ & 5 \end{aligned}$	175	$\begin{aligned} & 1,83766 \mathrm{E}+1 \\ & 1 \end{aligned}$	5735339	$\begin{aligned} & 3204 \\ & 1 \end{aligned}$	179
$\begin{aligned} & 2,28669 E+1 \\ & 1 \end{aligned}$	6539203	$\begin{aligned} & 3496 \\ & 9 \end{aligned}$	187	$\begin{aligned} & 2,54195 \mathrm{E}+1 \\ & 1 \end{aligned}$	6967871	$\begin{aligned} & 3648 \\ & 1 \end{aligned}$	191
3,1208E+11	7880599	$\begin{aligned} & 3960 \\ & 1 \end{aligned}$	199	$\begin{aligned} & 3,44731 \mathrm{E}+1 \\ & 1 \end{aligned}$	8365427	$\begin{aligned} & 4120 \\ & 9 \end{aligned}$	203
$\begin{aligned} & 4,18227 \mathrm{E}+1 \\ & 1 \end{aligned}$	9393931	$\begin{aligned} & 4452 \\ & 1 \end{aligned}$	211	$\begin{aligned} & 4,59401 \mathrm{E}+1 \\ & 1 \end{aligned}$	9938375	$\begin{aligned} & 4622 \\ & 5 \end{aligned}$	215
$\begin{aligned} & 5,51473 \mathrm{E}+1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1108956 \\ & 7 \end{aligned}$	$\begin{aligned} & 4972 \\ & 9 \end{aligned}$	223	$\begin{aligned} & 6,02739 E+1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1169708 \\ & 3 \end{aligned}$	$\begin{aligned} & 5152 \\ & 9 \end{aligned}$	227

Even so, there will be some numbers within the 4 columns that were not eliminated with the patterns above, which are future eliminations, and the others should only be tested with prime numbers already confirmed before it.

3.4. NP projection:

When a possible prime number is put to the test and in the case it is composed, we start to have possible arithmetic projections where, as an example, we take the number 210 dividing from the first prime number found onwards, we have:

$$
2=105 \rightarrow 105 / 5=21 \rightarrow 21 / 3=7 \rightarrow 7 / 1=7
$$

3.4.1. Where from largest to smallest result we have:

Tested number being divisible by its first prime number times its result (105 * $2=$ 210) or its result divisible by its first prime number times the initial divisible prime number ($21^{*} 5=105 \rightarrow 105^{*} 2=210$) and so on becoming: $21 / 3=7=\left(7^{*} 3=\right.$ $21 \rightarrow 21^{*} 5=105 \rightarrow 105$ * $2=210$

Thus, when found the smallest prime number divisible by the number tested, it automatically finds the largest prime number to be tested because its results are inversely equal, being necessary in this case above to test only up to the number 105.

3.4.2. Where from the smallest to the largest result we have:

All prime numbers divisible by the numbers tested with the last divisible prime number multiplied in any order using as a key:

Ex:

$210=2$ * 105
$210=2$ * 3 * 5 * 7
$210=7$ * 3 * 2 * 5
$210=5$ * 2 * 3 * 7
$210=3$ * 7 * 5 * 2

3.5. Twin cousins:

They are characterized by having a difference of at most 2 digits, and both are prime. As an example, we have the numbers 3 and 5 . Both are primes, the difference between them is always 2 . We can mention other pairs of twin primes for comparison in the table (3, 5); (5, 7); (11.13); (17.19); (29, 31); (41.43); $(137,139)$.

3.5.1. We can conclude that:

between the primary Xi that are 1,5, 7 and 11 we have: from number 1 to 5 we have an interval of 4 numbers $(5-1=4)$ from 5 to 7 has an interval of 2 numbers ($7-5=2$) and from 7 to 11 we have an interval of 4 numbers ($11-7=4$) so the twin primes can only be in the columns of 5 and 7 being known that the prime numbers are infinite and the twin primes being in infinite groups we also have infinite groups containing twin primes just increasing the distance between them so the probability of 2 primes falling in sequence in the same row as columns 7 and 11 is also infinite, just increasing the distance between them.

Ex:

29	31	185	187
41	43	197	199
53	55	209	211
65	67	221	223
77	79	233	235
89	91	245	247
101	103	257	259
113	115	269	271
125	127	281	283
137	139	293	295
149	151	305	307

4. Conclusion:

With numerical pattern achieved with the proposed graph, it is possible to predict synchronous interactions generating a fractal geometric pattern with possible practical applications in various areas of knowledge as is the case proposed by this study on the interactions of colors, numbers and sizes of electromagnetic waves, and can also predict interactions of atomic bonds, proteins as well as geometry of magnetic and particle displacements.

With this, it is concluded that it is possible to create a new concept of operational software, making the sending and processing of data not only faster, more practical and viable, but also a new form of machine/machine/Man interaction will be possible, where an artificial intelligence using Quantum light processing you can pick results from the beginning to the end of a block of circuits and can move "valves" creating new paths and results without human interaction.

5. Bibliographic referencies:

Google (imagens e Tradução)
Wikipédia
Pinterest
http://yinyangsincretismouniversale.blogspot.com/p/numerologia.html?m=1
Youtube
Sendo de maior relevância no Youtube os seguintes canais:
PODER DO EU SUPERIOR;

Sadhguru Português;
Ciências todo dia;
RenanRedPill;
ATECH-INFO.

